МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Департамент образования и науки Ханты-Мансийского автономного округа - Югры

Управления образования администрация Кондинского района

МКОУ Мулымская СОШ

РАССМОТРЕНО Руководитель МО Бородина И.В. укажите ФИО Протокол № от «02» 09 2024 г.

СОГЛАСОВАНО заместитель директора по ВР Никитина Н.В. Протокол $N_2 1_0$ от «02» 09 2024 г.

УТВЕРЖДЕНО директор школы Захарова С.А. Приказ № 340-од от «02» 09 2024 г.

РАБОЧАЯ ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ТЕХНИЧЕСКОЙ НАПРАВЛЕННОСТИ «РОБОТОТЕХНИКА»

для обучающихся 5 - 9 классов

п. Мулымья 2024 г.

Пояснительная записка.

Нормативно-правовые основания

Дополнительная общеразвивающая программа «робототехника» разработана на основе следующих нормативно-правовых документов, регламентирующих образовательный процесс в системе образования:

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 25.12.2023) «Об образовании в Российской Федерации» *(с изменениями и дополнениями, вступившими в силу с 01.05.2024)*;
- 2. Федеральный закон от 19.12.2023 № 618-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации»;
- 3. Постановление Правительства Российской Федерации от 11.10.2023 № 1678 «Об утверждении Правил применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ» (начало действия документа 01.09.2024);
- 4. Приказ Минпросвещения РФ от 31.05.2021 № 287 (ред. от 22.01.2024) «Об утверждении федерального государственного образовательного стандарта основного общего образования» (начало действия документа 01.09.2024);
- 5. Приказ Минпросвещения РФ от 19.02.2024 № 110 «О внесении изменений в некоторые приказы Министерства образования и науки Российской Федерации и Министерства просвещения Российской Федерации, касающиеся федеральных государственных образовательных стандартов основного общего образования» (начало действия документа 01.09.2024);
- 6. Приказ Минобрнауки РФ от 17.12.2010 № 1897 (ред. от 08.11.2022) «Об утверждении федерального государственного образовательного стандарта основного общего образования»;
- 7. Приказ Минпросвещения РФ от 27.12.2023 № 1028 «О внесении изменений в некоторые приказы Министерства образования и науки Российской Федерации и Министерства просвещения Российской Федерации, касающиеся федеральных государственных образовательных стандартов основного общего образования и среднего общего образования»;
- 8. Приказ Минпросвещения РФ от 18.05.2023 № 370 (ред. от 19.03.2024) «Об утверждении федеральной образовательной программы основного общего образования» (начало действия редакции 01.09.2024);
- 9. Приказ Минпросвещения РФ от 01.02.2024 № 62 «О внесении изменений в некоторые приказы Министерства просвещения Российской Федерации, касающиеся федеральных образовательных программ основного общего образования и среднего общего образования» (начало действия документа 01.09.2024);

- 10. Приказ Минпросвещения РФ от 04.10.2023 № 738 «Об утверждении федерального перечня электронных образовательных ресурсов, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего образования»;
- 11. Приказ Минпросвещения РФ от 31.08.2023 № 650 «Об утверждении Порядка осуществления мероприятий по профессиональной ориентации обучающихся по образовательным программам основного общего и среднего общего образования»;
- 12. Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (вместе с «СП 2.4.3648-20. Санитарные правила...»);
- 13. Постановление Главного государственного санитарного врача РФ от 28.01.2021 № 2 (ред. от 30.12.2022) «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (вместе с «СанПиН 1.2.3685-21. Санитарные правила и нормы...»);

Постановление Главного государственного санитарного врача РФ от 30.12.2022 № 24 «О внесении изменений в санитарные правила и нормы СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утвержденные постановлением Главного государственного санитарного врача Российской Федерации от 28.01.2021 № 2»;

- 14. Письмо Минпросвещения РФ от 22.05.2023 № 03-870 «О направлении информации» (вместе с «Методическими рекомендациями по введению федеральных основных общеобразовательных программ»);
- 15. Письмо Минпросвещения РФ от 26.02.2021 № 03-205 «О методических рекомендациях» (вместе с «Методическими рекомендациями по обеспечению возможности освоения основных образовательных программ обучающимися 5-11 классов по индивидуальному учебному плану»);
- Методические рекомендации «МР 2.4.0331-23. 2.4. Гигиена детей и подростков. 16. Методические рекомендации ПО обеспечению оптимизации учебной нагрузки общеобразовательных организациях. Методические рекомендации» (ytb. Главным государственным санитарным врачом РФ 10.11.2023);
- 17. Методические рекомендации «МР 2.4.0330-23. 2.4. Гигиена детей и подростков. Методические рекомендации по обеспечению санитарно-эпидемиологических требований при реализации образовательных программ с применением электронного обучения и дистанционных образовательных технологий. Методические рекомендации» (утв. Главным государственным

санитарным врачом РФ 29.08.2023) (вместе с «Рекомендациями для родителей (законных представителей) по сокращению экранного времени у детей»);

- 18. Приказ Департамента образования и науки Ханты-Мансийского автономного округа Югры от 18.05.2023 № 10-П-1197 «Об утверждении сроков перехода на обновленные федеральные государственные образовательные стандарты начального общего, основного общего и среднего общего образования в образовательных организациях Ханты-Мансийского автономного округа Югры»;
 - 19. Устав МКОУ «Мулымская СОШ»;
- 20. Основная образовательная программа основного общего образования МКОУ «Мулымская СОШ» (в том числе: учебный план на 2024-2025 учебный год; календарный учебныйграфик на 2024-2025 учебный год).

Общие сведения

Программа дополнительного образования детей «Робототехника» предназначена для дополнительного образования учащихся.

Программа дополнительного образования детей «Робототехника» подходит для обучающихся с задержкой психического развития. Программа определяет дополнительное содержание по учебному предмету «Технология» в форме и объеме, которые соответствуют возрастным особенностям и особым образовательным потребностям обучающихся с ЗПР. Овладение содержанием курса дополнительного образования «Робототехника» представляет определенную сложность для данной категории обучающихся с ОВЗ. Это связано со своеобразием психической деятельности обучающихся с ЗПР:

- низким уровнем познавательной активности, вследствие чего обучающиеся овладевают гораздо меньшим объемом знаний и представлений об окружающем мире, чем их нормативно развивающиеся сверстники;
- преимущественно пассивным характером усвоения знаний, которые с трудом актуализируются;
- низким уровнем развития познавательной сферы, трудностями понимания причинно-следственных связей и прогнозирования последствий тех или иных действий;
 - недостаточной сформированностью саморегуляции деятельности и поведения.

При адаптации программы основное внимание обращается на овладение обучающимися с ЗПР практическими умениями и навыками, на уменьшение объема теоретических сведений, включение отдельных тем или целых разделов в материалы для обзорного или ознакомительного изучения.

Направленность – техническая.

Содержание программы направлено на:

- создание условий для социального, культурного и профессионального самоопределения;
- творческой самореализации личности ребенка, его интеграцию в системе мировой и отечественной культур;
- обеспечение эстетического воспитания обучающихся;
- формирование и развитие творческих способностей обучающихся;
- удовлетворение индивидуальных потребностей обучающихся в интеллектуальном, художественно-эстетическом развитии;
- организацию свободного времени обучающихся;
- адаптацию обучающихся к жизни в обществе;
- выявление, развитие и поддержку обучающихся, проявивших выдающиеся способности.

Актуальность и педагогическая целесообразность программы.

Программа «Робототехника» предусматривает развитие способностей детей к наглядному моделированию. LEGO — одна из самых известных и распространённых педагогических систем, широкая использующая трёхмерные модели реального мира и предметно-игровую среду обучения и развития ребёнка. Игра — важнейший спутник детства. LEGO позволяет детям учиться, играя и обучаться в игре. Конструкторами Lego, которая охватывает почти все возраста детей, обучающихся в различных образовательных учреждениях. Дети в начальной школе, используя наборы Lego Wedo, могут не только создавать различные конструкции, но и создавать для них простейшие программы, выполняя которые конструктор становится не просто стационарной игрушкой, а настоящим исполнителем, который управляется человеком. И уже от фантазии учащихся будет зависеть, какие задачи научится выполнять их «игрушка», в каких ситуациях она сможет превратиться в помощника человека. Реализация этой программы помогает развитию коммуникативных навыков учащихся за счет активного взаимодействия детей в ходе групповой проектной деятельности.

Актуальность данной программы также обуславливается социальным заказом общества на технически грамотных специалистов в области авиамоделирования и заключается в наличии у детей школьного возраста повышенного интереса к различным летательным аппаратам. Обучение по данной программе способствует развитию технических навыков детей, создает условия для реализации личностных потребностей и жизненных планов ребенка. Проектная деятельность с использованием современного оборудования, которая широко применяется в образовательном процессе, позволит осуществить творческие замыслы детей. Программой

предусмотрена передача сложного технического материала в простой доступной форме с учетом возрастных и личностных особенностей учащихся.

Цель программы — создание условий для развития познавательных способностей учащихся на основе системы развивающих занятий по конструированию и программированию Lego. Создание условий для удовлетворения индивидуальных потребностей учащихся в интеллектуальном и техническом развитии с целью приобретение теоретических знаний, практических умений и навыков для успешной работы с беспилотными летательными аппаратами, формирование у обучающихся предпрофессиональных компетенций в области конструирования и эксплуатация летательных аппаратов, их настройки, программирования, тестирования, дефектовки и устранения неисправностей, не требующих серьезного ремонтаи сложного оборудования.

Задачи.

Обучающие:

- развитие первоначальных представлений о механике, основных узлах и компонентах типовых механизмов;
 - развитие основ пространственного, логического и алгоритмического, мышления;
- формирование элементов самостоятельной интеллектуальной и продуктивной деятельности на основе овладения несложными методами познания окружающего мира и моделирования;
- формирование системы универсальных учебных действий, позволяющих учащимся ориентироваться в различных предметных областях знаний и усиливающих мотивацию к обучению (вести поиск информации, фиксировать её разными способами и работать с ней;
 - развивать коммуникативные способности, формировать критичность мышления);
 - освоение навыков самоконтроля и самооценки;
 - развитие творческих способностей.
 - сформировать общее представление о разнообразии летательных аппаратов и специфике их применения, сформировать понимание различий пилотируемой и беспилотнойавиации;
 - актуализировать и закрепить знания обучающихся о различных типах и видах БПЛА, истории их возникновения, областях применения, общей классификации, ключевых особенностях и различиях;
 - познакомить обучающихся с текущим состоянием и перспективами рынка
 летательных аппаратов, изучить существующие технические и программные
 решения в данной области;

• закрепить у обучающихся знания, умения и навыки в области аэродинамики и физических основ полета БПЛА;

Развивающие:

- содействовать развитию творческого технического мышления и познавательной деятельности учащихся, в том числе в смежных областях знаний: физике, механике, электронике, информационных технологиях, и способности применения теоретических знаний в этих областях для решения задач в реальном мире;
- развивать навыки научно-исследовательской, инженерно-конструкторской и проектной деятельности;
- развивать умение ориентироваться в информационном пространстве, продуктивно использовать техническую литературу и другие ресурсы для поиска

необходимой для решения задачи информации;

- развивать потребность к постоянному самообразованию как в технической, так и в культурологической сфере;
- развивать навыки самостоятельной работы в учебно-познавательной деятельности при освоении новых дисциплин, умение работать самостоятельно, используя

необходимые ресурсы, правильно оценивая смысл и последствия своих решений и действий;

- развивать у обучающихся потребность к творчеству и умение применять полученные знания и умения в своих творческих работах и проектах, содействовать развитию умений творчески решать технические задачи;
 - развивать способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения;
- развивать настрой на успех в реализации своих проектов, волю к доработке их до полного завершения;

Воспитательные:

- воспитывать доброжелательного, интеллигентного человека, осознающего свою творческую индивидуальность и то же время умеющего работать в коллективе и поступаться личными интересами при достижении коллективных целей;
- воспитывать организационно-волевые качества личности для успешной деятельности, такие как усидчивость, настойчивость, терпение, самоконтроль;
- развить у обучающихся чувства ответственности, внутренней инициативы, самостоятельности, тяги к самосовершенствованию и самоорганизации;
- формировать интерес к практическому применению знаний, умений и навыковв повседневной жизни и в дальнейшем обучении;
- · поощрять целеустремленность, усердие, настойчивость, оптимизм, трудолюбие, аккуратность;

- мотивировать обучающихся к изобретательству, созданию собственных программных реализаций и электронных устройств;
- воспитать у учащихся стремление к получению качественного законченного результата в познавательной и проектной деятельности;
- прививать навыки эффективного распределения обязанностей при реализации проектов, требующего от участников знаний и умений из различных направлений командной работы;
- воспитывать бережливость и сознательное отношение к вверенным материальным ценностям;
 - прививать культуру организации рабочего места;
 - способствовать формированию научного мировоззрения;
- поддерживать представление учащихся о значимости общечеловеческих нравственных ценностей, доброжелательности, сотрудничества.

Отличительная особенность данного курса заключается в освоении конструирования и моделирования в игровой форме, возможности самовыражения, получение оценки результатов своего труда в коллективе, коммуникативного общения в образовательных целях.

Новизной данного курса является обучение конструированию и программированию с помощью игровых техник.

Характеристика программы.

Организация занятий по программе.

По дополнительной программе обучающиеся 5-6 (1 группа) и 7-9 (2 группа) классов занимаются 1 раз в неделю по 2 академических часа. Количество учебных часов в год – 68. Занятия проводятся в групповой форме. Обучающихся в группе – до 12 человек.

Уровень сложности программы. «Стартовый уровень»: предполагает использование и реализацию общедоступных и универсальных форм организации материала, минимальную сложность предлагаемого для освоения содержания программы.

Формы занятий по программе

Занятия по программе «Робототехника» включают теоретические, практические, индивидуальные, часы. При этом количество практических часов составляетболее 70% объёма программы. Раскрытие теоретических основ курса «Робототехника» осуществляется в форме бесед в непринужденной обстановке по принципу «от простого к сложному» с учётом уже имеющихся базовых знаний из собственного опыта использования ПК и конструкторов.

Практическая и исследовательская часть программы предусматривает как групповую форму работы, которая составляет около 20% объёма программы, так и самостоятельную работу по индивидуальным заданиям на занятии. Интересные формы занятий: игра—обучение, разработка мини-проектов, элементы коллективного способа обучения.

Контроль осуществляется по итогам каждого раздела программы. Формы контроля

проводятся в виде устного опроса, беседы, практических заданий.

Основными **критериями оценки эффективности** реализации дополнительной образовательной программы являются:

- информационный критерий (степень сформированности знаний о средствах и способах конструирования и программирования);
- инструментальный критерий (степень сформированности умений и навыков работы с программным обеспечением, оборудованием, инструментами);
- деятельностный критерий (участие в коллективных работах, выставках моделей, соревнованиях и т.п.)

Адресат программы:

Программа рассчитана на обучающихся 11-15 лет (5-9 классов), мотивированных на получение повышенных образовательных результатов.

Наполняемость группы: не более 12 человек.

Объем программы: 68 академических часов.

Форма и режим занятий:

Занятия проводятся:

- в онлайн формате в случае актированных дней, карантина и других ситуаций, требующих проведения занятий в дистанционной форме;
 - в очном формате –2 академических часа в неделю.

Формы очной организации образовательного процесса предполагают проведение коллективных занятий (до 12 человек), малыми группами (3-4 человека) и индивидуально.

Формы контроля и подведения итогов реализации программы

В образовательном процессе будут использованы следующие виды и методы контроля успешности освоения обучающимися программы:

Входной контроль – проводится в начале обучения, определяет уровень знаний, способностей ребенка (беседа, педагогическое наблюдение).

Текущий контроль с целью непрерывного отслеживания уровня усвоения материала, выполнения работ и стимулирования обучающихся. Для реализации текущего контроля в процессе объяснения теоретического материала преподаватель обращается к учащимся с вопросами и короткими заданиями; в процессе выполнения практических работ преподаватель контролирует и оценивает выполненные этапы работы.

Тематический контроль в виде выполнения индивидуального практического задания, отражающего основные аспекты изученной темы.

Итоговый контроль (промежуточная аттестация) заключается в выполнении итогового практического задания на проверку усвоения знаний и навыков, способности применения их на

практике.

Описание материально-технического обеспечения

Для реализации программы необходимо обеспечить наличие кабинета, компьютеров, проектора, интерактивной доски, робототехнических наборов Lego, наборов конструкторов программируемых квадрокоптеров «Пчела», «Геоскан Базовый».

Содержание обучения Тематическое планирование

	тематическое планирование						
№	Название темы Количество часов				Формы контроля		
Π/Π		Теория	Практика	Всего			
1.	Общие представления о	2	0	2	Беседа		
	робототехнике (2 часа)						
2.	Основы конструирования	2	12	14	Педагогическое		
	машин и механизмов. Сборка				Наблюдение,		
	набора LEGO NXT				практическая работа.		
_	MindstormsEV3 (24 часа)	_					
3.	`	0	4	4	Практическая работа		
	программирование. (4часа)						
4.	T P	2	0	2	Беседа		
	авиации (2 часа)						
5.	Отработка простыхэлементов.	0	15	15	Практическая работа		
	Взлёт, посадка, удержание						
	аппарата (10 часов)						
6.	Отработка сложныхэлементов.	0	21	21	Практическая работа		
	Облёт препятствий,						
	маневрирование, отработка						
	сложныхситуаций (18 часов)						
7.	Программирование	2	6	8	Беседа.		
	квадрокоптера (8 часов)				Практическая работа		
8.		0	2	2	Итоговая		
	Практическая работа. (2 часа)				практическая		
					работа		
	Итого:	8	60	68			

Содержание обучения

Тема 1. Общие представления о робототехнике (2 часа)

- 1.1 Введение в лего-конструирование. Инструктаж по ТБ.
- **1.2** Общие представления об образовательных конструкторах LEGO. Краткое резюме того, что будут изучать учащиеся на протяжении всего курса обучения легоконструированию.
- **1.3** Основные способы и принципы лего-конструирования. Демонстрация видеороликов лего-проектов «Робототехника»

Тема 2. Основы конструирования машин и механизмов (14 часов)

- **2.1** Этапы конструирования. Требования, предъявляемые к конструкциям: прочность, жесткость, устойчивость.
 - 2.2 Анализ существующих конструкций программно-управляемых машин и принципов их

работы.

- 2.3 Алгоритм конструирования по инструкциям.
- 2.4 Сборка моделей из конструкторов LEGO NXT MindstormsEV3.

Тема 3. Алгоритмизация. Автономное программирование. (4 часа)

- 3.1 Системы передвижения роботов
- 3.2 Программирование моделей.

Тема 4. История развития беспилотной авиации (2 часа)

4.1 Основные этапы становления БПЛА. Эксперименты с «человеком крылом», личность Можайского А.Ф, личность Леонардо да Винчи, личность Георгия Ботезада. Развитие БПЛА в России и мире.

Тема 5. Отработка простыхэлементов. Взлёт, посадка, удержание аппарата (15 часов)

- 5.1 Знакомство с пультом управления.
- **5.2** Практическое повторение теории управленияЛА. Mode1. Mode2. Газ, тангаж, крен, рысканье.
- 5.3 Отработка элементов взлёт, посадка, удержание ЛА.

Тема 6. Отработка сложныхэлементов. Облёт препятствий, маневрирование, отработка сложныхситуаций (21 час)

- 6.1 Практика полётов.
- 6.2 Отработка различных элементов.
- 6.3 Построение воображаемой трассы (с использованием возможностей аудитории).
- **6.4** Отработка критических ситуаций. Налётпрактики, получение моторных навыков пилотирования ЛА.

Тема 7. Программирование квадрокоптера (8 часов)

7.1 Программирование квадрокоптеров с помощью программы LiteBee

Тема 8. Итоговая аттестация. Практическая работа. (2часа)

8.1 Итоговая аттестация включает в себя пролётпо заранее обговоренном маршруту. Аттестация выполняется полностью самостоятельно. Учитывается уверенность действий, соблюдение техники безопасности, соблюдение порядкапроцедуры запуска ЛА.

Планируемые результаты

Предметные:

- знать правила безопасной работы с механическими и электрифицированными устройствами и компьютерной техникой;
- знать основные компоненты, роботизированные программно-управляемые устройства и конструктивные особенности различных моделей, сооружений и механизмов;
 - знать основные приемы конструирования роботов и уметь применять их;

- уметь демонстрировать технические возможности роботов и БПЛА;
- уметь создавать реально действующие модели роботов по разработанной схеме;
- уметь самостоятельно решать технические задачи в процессе конструирования роботов.
- иметь общее представление о разнообразии летательных аппаратов и специфике ихприменения
- знать историю возникновения летательных аппаратов, их типы, виды и общуюклассификацию, ключевых особенности и различия;
 - понимать различия пилотируемой и беспилотной авиации;
 - понимать принципы полёта различных летательных аппаратов;
 - знать устройство типового БПЛА, его элементов, деталей и составляющих;
- понимать специфику областей применения летательных аппаратов и их разнообразияв зависимости от областей применения;

Метапредметные:

- знать способы решения проблем творческого и поискового характера;
- уметь использовать различные способы поиска (в справочных источниках и открытом учебном информационном пространстве сети Интернет), сбора, обработки, анализа, организации, передачи и интерпретации информации в соответствии с коммуникативными и познавательными задачами и технологиями учебного предмета;
- уметь пользоваться логическими действиями сравнения, анализа, синтеза, обобщения, классификации по признакам, установления аналогий и причинно-следственных связей, построения рассуждений;
 - определять общую цель и пути ее достижения;
- осуществлять взаимный контроль в совместной деятельности, адекватно оценивать собственное поведение и поведение окружающих.

Личностные:

- уметь аргументировать свою точку зрения;
- уметь выслушивать собеседника и вести диалог;
- признавать возможность существования различных точек зрения и права каждого иметь свою;
- уметь планировать учебное сотрудничество с учителем и сверстниками, формировать дружеские связи со сверстниками;
 - иметь мотивацию к учебной деятельности;
 - уметь работать в паре и в коллективе, уметь рассказывать о постройке;

• уметь работать над проектом в команде, эффективно распределять обязанности.

Календарно-тематическое планирование

№ п/п	Дата	Дата	Тема занятия
	план	факт	
1.		1	Введение в лего-конструирование. Инструктаж по ТБ.
2.			Общие представления об образовательных конструкторах LEGO. Краткое резюме содержания курса обучения легоконструированию.
3.			Основные способы и принципы лего-конструирования. Демонстрация видеороликов лего-проектов «Робототехника»
4.			Основные способы и принципы лего-конструирования. Демонстрация видеороликов лего-проектов «Робототехника»
5.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
6.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
7.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
8.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
9.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
10.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
11.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
12.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
13.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
14.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
15.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
16.			Практическая работа: Сборка деталей образовательного конструктора LEGO Mindstorms.
17.			Изучение среды управления и программирования
18.			Изучение среды управления и программирования
19.			Изучение среды управления и программирования
20.			Изучение среды управления и программирования
21.			История развития беспилотной авиации
22.			История развития беспилотной авиации
23.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
24.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
25.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
26.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
27.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
28.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
29.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
30.			Отработка простых элементов. Взлёт, посадка, удержание аппарата
31.			Отработка простых элементов. Взлёт, посадка, удержание аппарата

32.	Отработка простых элементов. Взлёт, посадка, удержание аппарата	
33.	Отработка простых элементов. Взлёт, посадка, удержание аппарата	
34.	Отработка простых элементов. Взлёт, посадка, удержание аппарата	
35.	Отработка простых элементов. Взлёт, посадка, удержание аппарата	
36.	Отработка простых элементов. Взлёт, посадка, удержание аппарата	
37.	Отработка простых элементов. Взлёт, посадка, удержание аппарата	
38.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
30.	отработка сложных ситуаций	
39.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
40.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
41.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
42.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
43.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
44.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
45.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложныхситуаций	
46.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложныхситуаций	
47.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложныхситуаций	
48.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложныхситуаций	
49.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
	отработка сложныхситуаций	
50.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
7.1	отработка сложныхситуаций	
51.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
52	отработка сложныхситуаций	
52.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
53.	отработка сложных ситуаций	
33.	Отработка сложных элементов. Облёт препятствий, маневрирование, отработка сложных ситуаций	
54.	Отработка сложных элементов. Облёт препятствий, маневрирование,	
34.	отработка сложных элементов. Облет препятствии, маневрирование, отработка сложных ситуаций	
55.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
33.	отработка сложных элементов. Облет препятетвий, маневрирование,	
56.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложных элементов. Облет препятетвий, маневрирование,	
57.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
58.	Отработка сложныхэлементов. Облёт препятствий, маневрирование,	
	отработка сложных ситуаций	
59.	Программирование квадрокоптера	
60.	Программирование квадрокоптера	
61.		
	Программирование квадрокоптера	
62.	Программирование квадрокоптера	

63.	Программирование квадрокоптера	
64.	Программирование квадрокоптера	
65.	Программирование квадрокоптера	
66.	Программирование квадрокоптера	
67.	Итоговая аттестация.Практическая работа.	
68.	Итоговая аттестация.Практическая работа.	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Материально-техническое обеспечение:

- 1. Аудитория с проектором, интерактивной доской, возможностью выхода в интернет.
- 2. Компьютерный класс (8 комп.) с возможностью выхода в интернет.
- 3. Наборы LEGO Education Mindstorms EV3 (8 наборов).
- 4. Наборы программируемого конструктора квадрокоптер «Пчела» (4 набора).
- 5. Робототехнический набор «Геоскан Базовый» (1 набор)

Кадровое обеспечение программы:

Занятия по программе проводятся педагогом дополнительного образования, или учителем информатики и ИКТ, или учителем технологии.

Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация, демонстрация работы), практические (обучающиеся выполняют практические задания), аналитические. С целью вовлечения в продуктивную и творческую деятельность обучающихся будут использованы:

- анализ информационных источников (Интернет);
- основные методы сбора и обработки данных;
- метод погружения;
- опытная работа;
- элементы метода проектов;
- обобщение результатов исследовательской и проектной деятельности.

Информационные источники

- 1. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
- 2. Бабич А.В., Баранов А.Г., Калабин И.В. и др. Промышленная робототехника: Под редакцией Шифрина Я.А. М.: Машиностроение, 2002.

- 3. Юревич Ю.Е. Основы робототехники. Учебное пособие. Санкт-Петербург: БВХ-Петербург, 2005.
- 4. http://www.legoeducation.info/nxt/resources/building-guides/
- 5. http://www.legoengineering.com/
- 6. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
- 7. Я, робот. Айзек Азимов. Серия: Библиотека приключений. М: Эксмо, 2002.